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Machine learning-based clinical decision support system for
treatment recommendation and overall survival prediction of
hepatocellular carcinoma: a multi-center study
Kyung Hwa Lee 1,15, Gwang Hyeon Choi2,15, Jihye Yun 3, Jonggi Choi4, Myung Ji Goh5, Dong Hyun Sinn5, Young Joo Jin6,
Minseok Albert Kim7, Su Jong Yu7, Sangmi Jang2,6, Soon Kyu Lee8,9, Jeong Won Jang8, Jae Seung Lee10, Do Young Kim10,
Young Youn Cho11, Hyung Joon Kim11, Sehwa Kim12,13, Ji Hoon Kim12, Namkug Kim 3,14✉ and Kang Mo Kim 4✉

The treatment decisions for patients with hepatocellular carcinoma are determined by a wide range of factors, and there is a significant
difference between the recommendations of widely used staging systems and the actual initial treatment choices. Herein, we propose a
machine learning-based clinical decision support system suitable for use in multi-center settings. We collected data from nine institutions
in South Korea for training and validation datasets. The internal and external datasets included 935 and 1750 patients, respectively. We
developed a model with 20 clinical variables consisting of two stages: the first stage which recommends initial treatment using an
ensemble voting machine, and the second stage, which predicts post-treatment survival using a random survival forest algorithm. We
derived the first and second treatment options from the results with the highest and the second-highest probabilities given by the
ensemble model and predicted their post-treatment survival. When only the first treatment option was accepted, the mean accuracy of
treatment recommendation in the internal and external datasets was 67.27% and 55.34%, respectively. The accuracy increased to 87.27%
and 86.06%, respectively, when the second option was included as the correct answer. Harrell’s C index, integrated time-dependent AUC
curve, and integrated Brier score of survival prediction in the internal and external datasets were 0.8381 and 0.7767, 91.89 and 86.48, 0.12,
and 0.14, respectively. The proposed system can assist physicians by providing data-driven predictions for reference from other larger
institutions or other physicians within the same institution when making treatment decisions.
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INTRODUCTION
In 2020, primary liver cancer was the sixth most commonly
diagnosed cancer and the third leading cause of cancer-related
deaths worldwide1. The majority of liver cancers are hepatocellular
carcinomas (HCC). Given that most HCC patients also suffer from
liver dysfunction, the benefits of treating the cancer must be
weighed against the potential harms of medical interventions.
Consequently, treatment decisions for HCC patients are highly
multifactorial, with physicians taking into account not only the
tumor burden but also the extent of liver dysfunction and
performance status. The Barcelona Clinic Liver Cancer (BCLC)
algorithm, a widely used staging system2, has been endorsed in
clinical practice guidelines3,4. However, there is a significant
difference in the initial treatment choice between the recommenda-
tions of the BCLC system and real-world clinical practice, particularly
for patients in East Asia5,6. One of the possible reasons for this
discrepancy is etiological and ethnic differences, which play an
important role in post-treatment prognosis, as well as differences in
preferred treatment and medical reimbursement plans.

A clinical decision support system (CDSS) is an information
system designed to improve healthcare delivery by enhancing
medical decisions with targeted clinical knowledge, patient
information, and other health information7–9. Recently, artificial
intelligence (AI) has been applied to CDSS to predict post-
treatment prognosis for patients using machine learning (ML) or
artificial neural networks10,11. Previously, we developed ML-based
CDSS to recommend an initial treatment option and predict post-
treatment survival for HCC patients12. This model performed well
in an institutional patient cohort. In this study, we externally
validated the previous model using multi-center datasets from
eight institutions in South Korea and made modifications to
ensure its effective utilization across multiple institutions.

RESULTS
Demographic and baseline clinical characteristics of patients
Table 1 presents the demographic and baseline clinical character-
istics for all datasets. A full list of patient characteristics for each
center in the external validation datasets is described in the
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Appendix (pp 10–12). Excluding patients who underwent other
therapies and transplantation, the final study populations for the
internal and external validation datasets included 935 and 1750
patients, respectively. Initial treatment options included radio-
frequency ablation or percutaneous ethanol injection therapy
(RFA or PEIT) in 6.8% to 21.6% of patients, resection in 3.7% to
35.8%, trans-arterial chemoembolization (TACE) in 34.8% to 64.8%,

TACE combined with external beam radiotherapy (EBRT) in 0% to
24.4%, sorafenib treatment in 0% to 7.4%, and supportive care in
3.1% to 16.7% of patients.

Treatment recommendation model for multi-center setting
The seven top-performing classifiers, sorted by accuracy were the
C-support vector machine (SVM) with linear kernel, exhibiting the

Table 1. Baseline characteristics of the patients in the internal and external validation datasets.

Internal dataset (n= 935) External validation dataset (n= 1750) p value

Age, year 56.9 (24–91) 59.2 (27–93) <0.0001

Gender Male 764 (81.7) 1412 (80.7) 0.5524

Female 171 (18.3) 338 (19.3)

ECOG performance status 0 416 (44.5) 984 (56.2) <0.0001

1 or 2 481 (51.4) 716 (40.9)

3 or 4 38 (4.1) 50 (2.9)

Ascites Absent 787 (84.2) 1403 (80.2) 0.0126

Present 148 (15.8) 347 (19.8)

Varices Absent 667 (71.3) 1048 (59.9) <0.0001

Present 268 (28.7) 702 (40.1)

Child-Pugh class A 728 (77.9) 1353 (77.3) 0.7533

B 178 (19.0) 333 (19.0)

C 29 (3.1) 64 (3.7)

Body mass index, kg/m2 24.1 (11.7–41.2) 24.1 (13.8–41.2) 0.4269

Tumour number 1 561 (60.0) 1040 (59.4) 0.4916

2 or 3 180 (19.3) 368 (21.0)

≥4 194 (20.7) 342 (19.5)

Maximal tumour size, cm 5.2 (0.5–10.0) 4.7 (0.7–10.0) <0.0001

Distribution Single segmental 447 (47.8) 870 (49.7) 0.2699

Unilobar 221 (23.6) 431 (24.6)

Bilobar 267 (28.6) 449 (25.7)

Distant metastasis Absent 823 (88.0) 1594 (91.1) 0.014

Present 112 (12.0) 156 (8.9)

Vascular invasion Absent 713 (76.3) 1323 (75.6) 0.0002

Unilateral 146 (15.6) 209 (11.9)

Main or bilateral 76 (8.1) 218 (12.5)

RFA feasibilityb Feasible 193 (20.6) 479 (27.4) 0.0002

Non-feasible 742 (79.4) 1271 (72.6)

Laboratory findings AFPa, ng/mL 42.1 (0.4 – 2,689,770) 33.1 (0.7 – 1,339,065) 0.0734

Hemoglobin, g/dL 13.4 (6.2–19.6) 13.3 (3.3–22.0) 0.4460

Platelet count, x109/mm3 159.9 (13.5–706.0) 148.2 (0.8–640.0) <0.0001

ALT, U/L 51.1 (4–1914) 51.7 (0.1–1135) 0.2153

Total bilirubin, ml/dL 1.5 (0.3–42.9) 1.4 (0.2–38.2) 0.0005

Albumin, mg/dL 3.6 (1.1–5.0) 3.8 (0.8–5.2) <0.0001

Prothrombin time, INR 1.1 (0.8–2.8) 1.1 (0.8–12.9) <0.0001

Creatinine, mg/dL 0.9 (0.2–11.4) 0.9 (0–12.3) <0.0001

Initial treatment RFA or PEIT 78 (8.3) 240 (13.7) <0.0001

Resection 335 (35.8) 289 (16.5)

TACE 325 (34.8) 889 (50.8)

TACE combined with EBRT 65 (7.0) 114 (6.5)

Sorafenib treatment 30 (3.2) 60 (3.4)

Supportive care 102 (10.9) 158 (9.0)

Data are n (%), mean or amedian (range) in parentheses. p values were calculated using the χ2 test or Student t-test or Mann–Whitney U test.
AFP alpha-fetoprotein. ALT alanine aminotransferase. EBRT external beam radiotherapy. ECOG Eastern Cooperative Oncology Group. INR international
normalized ratio. PEIT percutaneous ethanol injection. RFA radiofrequency ablation. TACE transarterial chemoembolization.
b RFA feasibility was defined as the size or location of the tumor to receive percutaneous RFA successfully without significant complications.
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highest mean accuracy and recall, followed by the Gaussian
process, random forest, extra-trees, histogram-based gradient
boosting, light gradient boosting machine, and multi-layer
perceptron classifiers (Table 2). However, the SVM alone
performed worse than the ensemble voting machines that
included three to seven top-performing classifiers. There were
no significant differences between voting classifiers according to
the number of top-performing classifiers (Appendix p 15).
Compared to the previous cascaded model12, the mean accuracy
of the ensemble voting machine increased for both internal and

external datasets (Appendix p 15). The mean accuracy of the
external validation using ensemble voting machine was 55.34%,
which was lower than that of the internal dataset at 67.27%.
The results of individual training with each institutional dataset

demonstrated higher mean accuracy and recall compared to
those of external validation in all centers except for one,
Severance Hospital (Appendix p 16). The mean accuracy for each
institutional dataset was 66.53%, which was higher than that of
the external validation, 55.34%. Table 3 shows the performance of
the ensemble voting machine when the second treatment option
is considered correct in both internal and external datasets. When
the second option was considered correct, the accuracy of
external validation increased to 86.06%, similar to that of the
internal dataset and individual training for the external datasets.
After model calibration, there was a slight decrease in mean
accuracy, which was more pronounced in the external validation
datasets (Appendix pp 18–19). The decrease in accuracy can be
attributed to significant internal variations and diversity within the
datasets. Conversely, the standard deviation decreased after
model calibration, indicating that calibration contributed to more
consistent results.

Prediction of individual post-treatment survival and risk
stratification for each treatment
Table 4 displays the performance of the survival prediction model,
which achieved better results in the internal dataset compared to
the external validation dataset. The integrated time-dependent
area under the receiver operating characteristic curve (iAUC)
ranges from 72.63 to 86.18, with TACE showing the best
performance. Figure 1 provides simulation examples of risk
stratification for specific treatments using the model. In the group
of patients who actually underwent resection, the actual survival
rate of those recommended for resection by the first-stage model
(Fig. 1a) was higher compared to the group recommended for
TACE (Fig. 1b, c). Moreover, among patients who were initially
recommended for TACE by the first-stage model but actually
underwent resection (Fig. 1b, c), the survival prediction curves

Table 2. Top 7 classifiers sorted by accuracy for internal dataset.

Model Accuracy Recall Precision F1 score Kappa score MCC

Linear SVM 65.45 (3.49) 51.09 (4.26) 64.79 (3.71) 64.32 (3.20) 51.41 (4.79) 51.75 (4.93)

GPC 64.71 (2.66) 48.92 (3.24) 63.05 (2.50) 63.22 (2.49) 50.02 (3.73) 50.41 (3.80)

RF 64.49 (5.17) 47.54 (5.18) 62.97 (6.04) 63.01 (5.19) 49.48 (7.27) 49.92 (7.53)

ET 64.49 (3.18) 49.83 (5.00) 63.29 (3.41) 63.37 (3.21) 50.07 (4.77) 50.37 (4.85)

HGBC 64.28 (2.99) 49.07 (5.62) 64.02 (3.58) 63.22 (2.80) 49.79 (4.32) 50.20 (4.54)

Light GBM 63.74 (3.05) 49.62 (4.26) 62.81 (2.71) 62.73 (2.65) 49.38 (4.17) 49.73 (4.41)

MLP 63.64 (3.04) 48.72 (2.88) 62.44 (2.10) 62.46 (2.58) 48.63 (4.31) 48.88 (4.35)

Data are mean (SD) in parentheses.
MCC Matthew’s correlation coefficient. Linear SVM C-support vector machine with linear kernel. GPC gaussian process classifier. RF random forest classifier. ET
extra-trees classifier. HGBC histogram-based gradient boosting classifier. Light GBM light gradient boosting machine. MLP multi-layer perceptron classifier.

Table 3. Comparison of performance considering second treatment options.

Treatment options Internal dataset External datasets

External validation Individual training

Accuracy Recall Accuracy Recall Accuracy Recall

1st option 67.27 (2.94) 52.22 (4.67) 55.34 (6.09) 41.68 (3.88) 66.53 (5.90) 46.56 (8.13)

2nd option 87.27 (2.25) 71.24 (2.90) 86.06 (3.10) 64.49 (8.16) 84.08 (2.55) 59.63 (6.83)

Data are mean (SD) in parentheses.

Table 4. Performance of survival prediction of internal and external
datasets.

Dataset Center Performance

C-index iAUC IBS

Internal dataset AMC 0.8381 (0.0276) 91.89 (2.08) 0.12 (0.01)

External datasets KUGH 0.7812 87.08 0.10

SNUBH 0.7833 88.23 0.15

SMC 0.7580 84.28 0.15

SNUH 0.8053 89.48 0.14

CMC 0.7458 84.78 0.18

SH 0.8254 89.39 0.10

CUH 0.7208 80.73 0.17

IUH 0.7935 87.84 0.10

Average 0.7767 (0.0315) 86.48 (2.82) 0.14 (0.03)

Data are mean (SD) in parentheses.
C-index Harrell’s concordance index. iAUC integrated time-dependent area
under the receiver operating characteristic curve. IBS integrated Brier score.
KUGH Korea University Guro Hospital. SNUBH Seoul National University
Bundang Hospital. SMC Samsung Medical Center. SNUH Seoul National
University Hospital. CMC Catholic Medical Center. SH Severance Hospital.
CUH Chung-ang University Hospital. IUH Inha University Hospital.
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based on setting TACE as the treatment input variable in the
survival prediction model showed a stronger correlation with the
actual survival curves compared to those for resection. These
findings demonstrate that our model has the capability to predict
the prognosis of patients accurately. In the supplementary
experiments, we used propensity score matching to achieve a
closer match between the two groups. We then evaluated the
model’s performance and analyzed the reasons for the observed
changes in its performance (Appendix pp 20–25). Furthermore, we
used models trained separately with two institutional datasets to
simulate different treatment choices and subsequent survival
prediction outcomes for new data from another center as shown
in Fig. 2.

DISCUSSION
In this study, we developed a two-stage ML-based model for
treatment recommendation and post-treatment survival predic-
tion for patients with HCC, which was validated using multi-center
datasets. The performance of external validation on treatment
recommendation using the ensemble voting machine was inferior
to the results obtained from the internal dataset and those trained
individually with each institutional dataset. The cause of this
performance decline is speculated to be due to the different
treatment options among institutions, prompting us to propose a
second treatment option in addition to the first, using the
probabilities from the ensemble voting machine. Furthermore, the
risks associated with each treatment can be stratified by

predicting individual survival based on the recommended
treatment and other prognostic variables.
The strength of our CDSS model lies in its ability to not only

provide treatment suggestions but also prognoses associated with
those treatments. This model can serve as a supplementary
system to the current guidelines, assisting physicians in determin-
ing treatment options for HCC. Additionally, it can help explain the
rationale behind treatment choices to patients. In particular,
treatment selection can be further supported by predicting
individualized survival graphs for patients with various treatment
options available or who are at the borderline of the guidelines.
Furthermore, this model can be beneficial in aiding treatment
decisions for inexperienced doctors or in situations where
multidisciplinary care poses challenges.
However, developing a CDSS for treatment decisions in HCC

presents significant challenges. One of the primary factors
contributing to these challenges is the intricacy of determining
the optimal treatment option due to the heterogeneous nature of
HCC and underlying chronic liver disease. The optimal treatment
option for HCC may vary depending on individual patients’
medical conditions, insurance coverage, and willingness to
undergo treatment. Consequently, the management of HCC in
real clinical practice often deviates from the treatment options
recommended by the widely accepted BCLC staging system13,14.
In this study, we developed a CDSS model that emulates
treatment decisions made by clinical physicians to address the
substantial disparities observed between actual treatment deci-
sions and the recommended treatment guidelines. However, one
of the most significant issues associated with this type of CDSS is

a b 

Real treatment = Resection
Recommended treatment = Resection
Input variable for survival prediction = Resection

c

Real treatment = Resection
Recommended treatment = TACE
Input variable for survival prediction = Resection

Real treatment = Resection
Recommended treatment = TACE
Input variable for survival prediction = TACE
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Fig. 1 Actual (=Ground truth) and predicted (=Prediction) survival curves according to a treatment input variable in the second-
stage model. a Patients who were recommended resection in the first-stage model and actually underwent the resection. In the second-stage
model, the treatment input variable was set as resection. b, c Patients who were recommended TACE in the first-stage model but underwent
resection in actual practice. In the second-stage model, the treatment input variable was set as resection in b and TACE in c.
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Fig. 2 An example of simulations on the new data using models trained individually with each institutional dataset.
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the rationality and appropriateness of the judgments made by the
clinical physicians used as the reference standard. To mitigate
these concerns, we provided alternative options and correspond-
ing survival rates in addition to the optimal treatment option.
Moreover, we recommend the complementary use of a data-
driven CDSS system based on the recommendation-based current
guidelines.
Another notable limitation of the current data-driven CDSS is its

inherently data-restrictive nature. Over the past several decades,
cancer treatment has undergone significant advancements, and
the expansion of extensive genetic and clinical databases,
supported by efficient computing systems, has accelerated the
pace of treatment advances and shortened the cycle for updating
treatment guidelines. However, data-driven models ultimately rely
on past databases to derive conclusions. Consequently, if newly
developed treatment options are inadequately represented or
absent in the training dataset, the CDSS model may fail to select
those treatments or accurately predict patient survival. During the
study period, Sorafenib, a protein kinase inhibitor with activity
against many protein kinases including vascular endothelial
growth factor receptors, platelet-derived growth factor receptors,
and RAF kinases15,16, was the first-line recommended treatment
for advanced-stage HCC according to the BCLC staging system.
However, due to issues related to insurance coverage, Sorafenib
was not widely utilized in actual clinical practice. Consequently, it
was rarely recommended by the current model, and the reliability
of treatment classification and survival prediction for that
treatment was low. Similarly, newly incorporated treatments for
advanced-stage HCC in the recent BCLC guidelines, such as
Atezolizumab-Bevacizumab, Durvalumab-Tremelimumab, and
Lenvatinib, were entirely absent from the training dataset.
Therefore, the existing model is unable to predict these newly
incorporated treatments.
To overcome these limitations, physicians must acknowledge

the constraints of the system and consistently update it with new
data, with the assistance of the model developer. The field of
cancer treatment is a constantly evolving domain where new
therapies emerge to replace previous treatment modalities, and
innovative treatment approaches continue to arise. Therefore, it is
crucial to periodically update the model with new data and
analyze whether the results align with physicians’ opinions and
the latest treatment guidelines (Appendix p 26). This periodic
analysis should also include the variable selection process. In a
previous study, we selected 20 key features from the initial 61
pretreatment variables based on the importance scores calculated
from the automated classifier model12. Feature reduction helps to
select the most influential features by providing unique knowl-
edge for inter-class discrimination17,18. However, the excluded
features in this process could be significant factors in determining
treatment choices for certain patients within the internal dataset
or patients in external datasets. Furthermore, the factors that
determine treatment and subsequent prognosis are constantly
changing as new diagnostic methods, genetic biomarkers, and
novel treatments are developed. Therefore, it is essential to select
new deterministic features, evaluate their prognostic effects, and
retrain the model with the modified features for continuous
learning. Automatic data updates from an electronic medical
record database and tumor segmentation using deep learning
techniques from computed tomography (CT) or magnetic
resonance imaging (MRI) may be useful for this process19,20.
Recently, several studies have explored the use of ML or deep

learning to predict the prognosis of HCC patients, incorporating
radiomics, proteomics, and genomics21–26. However, it remains
challenging to predict initial treatment choices or post-treatment
survival based solely on radiomic or genomic features extracted
from diagnostic images or tissues at a specific time point.
Furthermore, the effective integration of high-dimensional data
such as images or genomic profiles with more concise clinical

variables remains an unresolved issue. In this study, we employed
clinically established prognostic factors to predict initial treatment
choices and post-treatment survival of HCC patients. However,
further research is needed to explore whether the combination of
radiomics, proteomics, and genomic features with these estab-
lished prognostic factors can enhance the accuracy of predictions.
In machine learning, overfitting is a prevalent issue that occurs

when a model becomes excessively specialized to the training
data, resulting in degraded performance on new, unseen data.
One of the reasons for the decreased performance of our model
on external datasets is primarily due to its training on the internal
dataset, which led to overfitting. Specifically, the diversity and
variability in treatment choices among institutions for patients
with similar characteristics inevitably contributed to this perfor-
mance decline. There have been numerous approaches proposed
to address the issue of overfitting27,28. Increasing the diversity of
the training data by collecting various examples or using data
augmentation techniques can enhance the generalization of the
model. Moreover, reducing the model’s complexity by limiting the
number of parameters and employing regularization techniques
can effectively prevent overfitting. In this study, we improved the
model performance by utilizing an ensemble voting approach
instead of using a single machine learning algorithm. To reduce
the complexity of the model, we minimized hyperparameter
tuning for each algorithm. Furthermore, considering the signifi-
cant variation in treatment patterns among different institutions,
we proposed the inclusion of alternative treatment options in
addition to providing only one treatment option that may be
overfitted to the internal dataset. However, to significantly
improve the performance of external validation datasets, it may
be more effective to incorporate external datasets into the
training dataset or conduct individual training.
Medicine is not only a science, but also a social and

psychological subject. Wilkinson et al. argued that the majority
of health states and events are so complex that we can only
understand them probabilistically, and chance can never be
predicted at the individual level29. Recent studies on Watson for
Oncology, an AI assistant decision system developed by IBM
Corporation with the help of top oncologists from Memorial Sloan
Kettering Cancer Center, also commonly mention the system’s
limitations and complementary roles30,31. Nonetheless, in an era of
accelerated developments in new diagnostic methods, biomar-
kers, and treatments, selecting the appropriate treatment for
individuals based solely on simple guidelines is becoming
increasingly challenging. Therefore, by incorporating our system
as a complementary resource for physician decision-making, along
with the existing BCLC guidelines, can assist in guiding physicians
to make more individualized treatment choices. Furthermore, our
proposed system can be utilized as a virtual simulation tool for
comparing institutional treatment choices and post-treatment
prognoses in advance. Although digital twin technology is still in
its early stages of development in the healthcare and medicine
fields32–34, our system can serve as an example of its potential
application.
In conclusion, we developed and validated an ML-based model

that offers initial treatment recommendations and predicts post-
treatment survival for HCC patients, utilizing multi-center datasets.
Several experiments were conducted to ensure the model’s
applicability in a multi-center setting, and we have addressed
various issues and strategies for implementing this system within
an actual clinical environment. Our proposed CDSS can assist the
process of making treatment decisions for HCC patients by
providing data-driven predictions in conjunction with existing
guidelines.
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METHODS
Internal dataset and pre-treatment variables
For the purposes of training and internal validation, we used a
prior dataset, which comprised 1021 newly diagnosed HCC
patients at the Asan Medical Center in South Korea between
January and October 201012. All enrolled patients were diagnosed
with HCC using liver protocol CT or MRI or liver biopsy in
accordance with the current guidelines of the American Associa-
tion for the Study of Liver Diseases35. Exclusion criteria were as
follows: (a) patients with a history of prior HCC treatment
(n= 356), (b) patients with metastatic liver cancer or secondary
malignancies that might affect survival (n= 36), (c) patients with
combined hepatocellular cholangiocarcinoma (n= 21), (d)
patients with incidentally detected HCC after transplantation
(n= 7), and (e) patients who underwent cytotoxic chemotherapy,
other targeted agents (brivanib, sunitinib, erlotinib), or combined
treatments (n= 83).
We retrospectively collected a total of 61 pre-treatment

demographic, clinical, and imaging variables, initial treatment
information, and survival status of 1021 HCC patients from an
institutional database (Appendix p 4). To select the key variables,
we used importance scores calculated by the previously described
automated classifier models (Appendix pp 5–9), resulting in a
selection of 20 variables, including 14 patient-related factors (age,
body mass index, Child-Pugh class, presence of varix, presence of
ascites, Eastern Cooperative Oncology Group score, hemoglobin
level, platelet count, albumin level, prothrombin time, alanine
aminotransferase level, total bilirubin level, creatinine level, and
alpha-feto protein level) and 6 tumor-related factors (tumor
number, maximal tumor size, tumor distribution, presence of
portal vein invasion, presence of metastasis, and RFA feasibility)12.
Overall survival was defined as the time between HCC diagnosis
and death from any cause.
Previously, the initial treatment options were grouped into

eight categories: RFA/PEIT, surgical resection, TACE, TACE com-
bined with EBRT, sorafenib treatment, supportive care, transplan-
tation, and other therapies that did not fit into the other seven
predefined categories. In this study, we excluded other therapies
and transplantation options due to significant heterogeneity
among institutions in the other therapies group and large
differences in the number of patients between institutions due
to the severe shortage of deceased liver donors in the
transplantation group, respectively. Furthermore, due to one
institution among the eight external centers reporting a maximal
tumor size of 10 cm for tumors larger than 10 cm, the maximal
tumor size values for the remaining centers, including the internal
dataset, were uniformly adjusted using the same rule, wherein any
size exceeding 10 cm was recorded as 10 cm.

External datasets
We collected datasets from eight institutions for external
validation of the algorithm, including Korea University Guro
Hospital (n= 138), Seoul National University Bundang Hospital
(n= 193), Samsung Medical Center (n= 439), Seoul National
University Hospital (n= 224), Catholic Medical Center (n= 162),
Severance Hospital (n= 148), Chung-ang University Hospital
(n= 171), and Inha University Hospital (n= 275). All datasets
were compiled from a retrospective database of HCC patients
diagnosed in each institution between January 2010 and
December 2012. De-identified information on 20 pre-treatment
key variables, initial treatment information, and survival status
were obtained at the patient level. The protocols of this study
were approved by the Institutional Review Board of Asan Medical
Center (IRB number: 2017-0188) and the study was approved by
each institutional review board of all the participating institutions.
The requirement for informed consent from patients was waived
due to the retrospective nature of the study. All methods were
performed in accordance with the relevant guidelines and
regulations.

Model development
The ML algorithm consists of two stages: The first stage
recommends initial treatment, and the second stage predicts
post-treatment survival, as illustrated in Fig. 3. In the first stage, we
modified the previous cascaded random forest model12 to an
ensemble voting machine to improve the model’s flexibility and
classification performance. Initially, we evaluated 19 ML algorithms
for the development of the ensemble voting approach. Following
the sorting of each classifier based on mean accuracy, the
ensemble voting machine was trained using the top-performing
three, five, and seven classifiers for the internal dataset. These
ensemble voting machines were then compared with the top-
performing classifier itself. Ultimately, we applied an ensemble
voting machine involving the top five performing classifiers and
evaluated its performance on both the internal and external
validation datasets. Detailed information regarding the develop-
ment of the ensemble voting machine is described in the
Appendix (pp 13–15). Finally, we compared its performance to
that of the previous cascaded random forest model.
We conducted two additional experiments to enhance the

usability of this model in a multi-center setting. First, we trained
the model using each institutional dataset (Individual training) and
compared its performance with that of external validation.
Second, we derived the first and second treatment options from
the ensemble voting machine’s results using the highest and
second-highest probabilities, respectively, and recalibrated the
evaluation metrics by treating the second treatment option as the

1st option : Resection
(Confidence level 47%)

2nd option : RFA
(Confidence level 30%)

I. Preparation of 20 key variables II. Treatment recommendation III. Survival prediction

Classifiers

Pr
ob

ab
ili

tie
s

Fig. 3 Overall workflow.
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correct answer. The final performance of the ensemble model
after model calibration was assessed in both the internal and
external validation datasets. The process of model calibration is
described in the Appendix (p 18). All experiments for the internal
dataset and each institutional dataset were trained and tested
using a five-fold cross-validation stratified by the treatment, while
external validation was performed using the model trained with
the entire internal dataset.
For the second stage, we trained the random survival forest

algorithm with 21 variables, including 20 key variables and the
initial treatment information, to predict post-treatment survival.
Finally, we employed our two-stage model to simulate risk
stratification for each treatment by predicting individual post-
treatment survival based on the treatment recommendation
results from the first stage model. TACE and resection, the two
treatments with the highest proportion in the internal dataset,
were used as illustrative examples for risk stratification.

Statistical analysis
The baseline characteristics of patients between the internal
dataset and the external datasets were compared using the chi-
square test for categorical variables. For the continuous variables,
we assessed normality using Shapiro-Wilk’s W test, and based on
the results, we employed either the Student t-test or the Mann-
Whitney U test for comparison. Per-patient based analysis was
used to evaluate the treatment recommendation model, which
included metrics such as accuracy, macro-average of recall,
weighted-average precision, weighted-average F1 score, Cohen’s
kappa score, and Matthew’s correlation coefficient36. For the
survival prediction model, we utilized three metrics to evaluate
performance: Harrell’s concordance index, iAUC, and integrated
Brier score37. To evaluate the survival curve, we estimated it using
a Kaplan-Meier fitter and compared it to those predicted by our
model38. The open-source scikit-learn package version 0.23.239,
scikit-survival package version 0.15.040, and scipy package version
1.5.4 were used for model development and statistical analyses.

DATA AVAILABILITY
Limited deidentified data used for the analyses (internal and multi-center external
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